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The Benjamini-Schramm limit



Limits of finite graphs

The aim of the thesis is to show the convergence properties of

particular sequences of finite graphs. Before doing this, it is

natural to ask what it really means to take a “limit” of finite

graphs, and what problems one might encounter in defining this.

So to begin, we motivate the definition of the Benjamini-Schramm

limit by highlighting the complication with graphs.
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Limits of finite graphs

Graph limits: attempt #1

Consider the following sequence of graphs: take Bn(Z2, 0) to be

the ball of radius n around 0 in the integer lattice (with the graph

metric). Imagine coloring one of these balls the red, and color a

second such ball blue, and then connect the two at (0, 0) with a

line of length n. Call these graphs Gn.
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Limits of finite graphs (Graph limits: attempt #1 (cont.))

This sequence Gn illustrates a particular problem. As n→∞,

there are two growing graphs of different colors, which are moving

away from eachother. Naively, in the “limit” one has two copies of

Z2, with different colors, infinitely far away from eachother,

with some line “connecting” them.

This is obviously a problem — the limit may be an infinite graph,

but no two vertices should be infinitely far apart. What is it that

goes wrong?
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Limits of finite graphs (Graph limits: attempt #1 (cont.))

The issue is that the space of graphs simply cannot itself be given

any reasonable topology. We are forced to think about rooted

graphs.

The limit depends on how we choose the roots!

But, if one assigns the root into the red ball, then the blue ball

“disappears off to infinity”, and conversely if one assigns the roots

into the blue ball, then the red ball “disappears off to infinity”.

So how do we resolve this?
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Limits of finite graphs

So how do we resolve this?

We resolve it the way any good analyst would...

with measures!

This leads us to the Benjamini-Schramm limit.
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Limits of finite graphs

Definition: G•
We define G• to be the space of (isomorphism classes of) rooted,

connected and locally finite directed graphs, equipped with the

projective topology. [BS11, Kai15].

This space is locally compact and metrizable. And the subsets of

G• of graphs with bounded vertex degree form compact subsets.
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Limits of finite graphs

The Benjamini-Schramm limit

With G• so defined, every finite graph G yields a probability

measure on G• by taking a random rooting (G , o) of G .

µ =
1

|G |
∑
v∈G

δ[(G , o)]

That is, we can take a normalized sum of point masses of

(isomorphism classes of) the different rootings of G

We can then say that a sequence of finite graphs Gn converge in

the Benjamini-Schramm sense, if the µn converge (in the weak-∗
topology) in M(G•) — the space of Borel probability measures on

G•.
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Limits of finite graphs

This resolves our earlier problems. Effectively, the

Benjamini-Schramm limit captures all of the different conceivable

subsequential limits of rootings of Gn, forming a distribution over

the limit set of different rootings.

8



Limits of finite graphs

Sidenote: ...what is a graph?

Q: Everyone has their own definition of a “graph”; what definition

are we using?

A: For our purposes, a graph will be a pair of vertices and oriented

edges, (V ,E ) with E ⊆ V × V . This would sometimes be called a

digraph with no multiple edges. We will also consider edge-labelled

graphs, where there is a map ` : E → A. Benjamini-Schramm

convergence remains the same, we just modify the meaning of ∼=.
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Limits of finite graphs

This solves our problem. Now what about these “particular

sequences of graphs”?
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Rauzy graphs

What about these “Rauzy graphs”

We will start with Rauzy graphs, because these are more closely

related to the origin of this project.

We will start by talking about subshifts.
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Rauzy graphs

Subshifts

Given a finite alphabet A with |A| ≥ 2, we can equip all An with

the product-of-discrete topology, and then we define the space of

(singly) infinite words with the projective topology

AN := lim←−A
n

this space is compact, metrizable, and totally disconnected; we call

it the space of infinite words. It comes with a continuous self-map,

S , the shift.

S : ω0ω1ω2 · · · 7→ ω1ω2ω3 . . .

We call compact S-closed subsets X ⊆ AN subshifts.
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Rauzy graphs

Languages

As the infinite words are themselves (projective) limits of finite

words, it should be unsurprising that the subshifts X are

determined by the permitted finite subwords [LM95]. For any

subshift X , we can define the language, L(X ) ⊂ A∗ (the free

monoid on A) to be the set of all finite length words which appear

in some infinite word in X . In fact, it is usually easiest to define a

particular subshift by defining the language.
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Rauzy graphs

Example: the golden mean shift

We can define the golden mean shift this way, by defining X to be

the collection of infinite words which do not contain the subword

11. So the language of X is then:

L(X ) = {ε, 0, 1, 00, 01, 10, 001, 010, 100, 101, 0000, . . . }

We can also define Ln(X ) = L(X ) ∩ An to be the subwords of

length n. In the above example, L3(X ) = {000, 001, 010, 100, 101}
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Rauzy graphs

Rauzy graph

With these definitions, the nth Rauzy graph of a subshift is a

graph where the vertices are the length n subwords, and there is an

(oriented) edge (u, v) between two length n words if u precedes v

in a word w of length n + 1. That is, Rn(X ) = (Ln(X ),E ) where

(u, v) in E ⇔
u︷ ︸︸ ︷

w1 w2 . . .wnwn+1︸ ︷︷ ︸
v

, w ∈ Ln+1(ω)
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Rauzy graphs

Labelled Rauzy graphs

We can also add labels to the edges, by “coloring” the edge with

the newly added letter of A. For every edge (u, v),

(u, v) in E ⇔
u︷ ︸︸ ︷

w1 w2 . . .wnwn+1︸ ︷︷ ︸
v

, w ∈ Ln+1(ω)

and `((u, v)) = wn+1.

We will denote these edge-labelled Rauzy graphs by
⇀
Rn(Xω).
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Rauzy graphs

Rauzy graphs of the golden mean shift

labels: blue-thick = 0, red-dashed = 1

0 1

00

01

10

000

001

010

100

101

First three Rauzy graphs of the golden mean shift.
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Rauzy graphs

The high-complexity case

The golden mean shift, and the full shift {0, 1}N are both examples

of shifts of finite type, where the shifts are determined by a finite

number of forbidden symbols. For the golden mean shift, {11} is

forbidden, and for the full shift, nothing (∅). These subshifts are

typically of high-complexity, having exponential growth in |Ln(X )|.

The only exceptions are degenerate cases where |X | <∞, like

when X is a periodic shift. This happens if {00, 11} are forbidden,

or if {1} is forbidden, for example.
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Rauzy graphs

The high-complexity case

In the case of high-complexity shifts, the Benjamini-Schramm limit

of the associated Rauzy graphs has already been studied.

It was shown, for instance, that the labelled Benjamini-Schramm

limit of the Rauzy graphs of the full shift (these are known as the

de Bruijn graphs) converge to

Cay (L2, {→, flip→})

where L2 is the lamplighter group, Z o Z2. The unlabelled graph

limit yields the famous Diestel-Leader graph, DL(2, 2).

See [Lee16, GLN16, Kai18], and also unpublished work by

Kaimanovich, Leeman, and Nagnibeda.
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The low-complexity case

The low-complexity case

The low-complexity case, however, is somewhat different, and that

is what this thesis addresses.
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The low-complexity case

Low-complexity word

Given an infinite word ω ∈ AN, there is a smallest subshift

Xω ⊆ AN containing ω, which is easily seen to be

Xω = { Skω : k ∈ N }

that is, the closure of the orbit of ω is a subshift (recall that S is

the shift). We can say that ω is of low-complexity if for some K

lim sup
n

|Ln(Xω)|
n

< K

That is, low-complexity words have linearly many subwords of

a given length, rather than exponentially many!
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The low-complexity case

A result of Cassaigne & Frid, [Fri01, Cas96]

Cassaigne showed that the linear growth of subword complexity is

equivalent to bounded differences between |Ln+1(Xω)| and

|Ln(Xω)|. That is, ω is of low-complexity if and only if there is a k

such that

∀n. |Ln+1(Xω)| − |Ln(Xω)| < k

Frid interpreted this in terms of Rauzy graphs, and pointed out

that this means that in any Rauzy graph, there must be a bounded

number of vertices with in-degree or out-degree greater than 1.
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Our first result



Unlabelled convergence

Unlabelled convergence for aperiodic low-complexity words

By the result of Cassaigne & Frid, there are a bounded number of

special vertices in any Rn(Xω): A special vertex is just a vertex

where the in-degree or out-degree are not equal to 1.

• ? ? ? ?

(•) is regular; the (?)s are special.
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Unlabelled convergence

Theorem 1

If ω is a low-complexity aperiodic word, then the unlabelled Rauzy

graphs Rn(Xω) converge to a point mass concentrated on the line

graph in G•.

Proof sketch:

If ω is aperiodic then |Ln(Xω)| → ∞, and so the special vertices

can be made to occupy an arbitrarily small part of the graphs.

Adding into this the bounded vertex degree of Rauzy graphs (the

vertex degree is always less than 2|A|), and using that in any

Rauzy graph Rn(Xω) that there are at most K special vertices for

some K , one gets that there are at most K + (K |A| − 1)r vertices

within distance r of a special vertex.
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Unlabelled convergence

Proof sketch (cont.):

Since |Ln(Xω)| → ∞, this means that for any r ∈ N, an

r -neighbourhood of (uniformly) randomly chosen vertex in Rn(Xω)

will not include any special vertex with probability at least

1− K + (K |A| − 1)r

|Ln(Xω)|
→ 1

and since the (connected) r -neighborhood contains no special

vertices, it must be a line1. Since every neighborhood randomly

converges to a line, and since G• is equipped with the projective

topology, the Benjamini-Schramm limit is shown to be the point

mass of the line graph.
1It cannot be a cycle, or else Xω would be finite.

25



Unlabelled convergence

Tidying up: the finite cases

If ω is not aperiodic, then it is either eventually periodic or

periodic. In these two cases, the Rauzy graphs both stabilize to

either a finite cycle (the periodic case) or else a graph that

resembles:

The cycle has only one symmetry class, so the Benjamini-Schramm

limit is just a point pass on the finite cycle. In the eventually

periodic case, the above graph is rigid, so the limit is a uniform

measure on all distinct rootings of the graph above (the length of

the “handle” and the size of the “loop” may be different). 26



Unlabelled convergence

This classifies the unlabelled limits. What about limits of labelled

graphs?
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The labelled case



The labelled case

Sequences of edges encode finite subwords

For labelled Rauzy graphs, the labels of subsequent edges encode a

sequence of letters wn+1wn+2 . . .wn+k , which are themselves a

word in L(Xω). Since (by theorem 1) typical neighbourhoods are

lines, this means that when we randomly sample a neighbourhood

in the Rauzy graphs, we are really sampling finite words from ω.

abbab bbaba babaa abaab baabb aabba abbaa
a a b b a a

aabba

abbaa

28



The labelled case

This leads us to ask, how do we make sense of the “probability” or

“frequency” of a subword in ω?
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The labelled case

Uniform frequencies

It turns out that a finite word u only has well defined frequencies if

the following limit exists uniformly in k 2:

frequ(Skω) := lim
n

1

n + 1
#{ occurrences of u in ωkωk+1 . . . ωk+n }

= ...

= lim
n

1

n + 1

n∑
i=0

Iu
(
S i+kω

)

2So require that for some c that limn supk

∥∥ 1
n+1

∑n
i=0 Iu

(
S i+kω

)
− c
∥∥ = 0
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The labelled case

That is, it can be viewed as an ergodic average. Moreover, if the

frequency of every subword is defined (we need it to be.), then

since the Iu functions generate a dense subalgebra3 of C (AN,R),

Oxtoby’s uniform ergodic theorem ([Oxt52]) gives us that (Xω, S)

is uniquely ergodic, and we get that for the unique S-invariant

measure µ,

frequ(ω) = µ(u)

3The span of {Iu}u∈A∗ separate points and contain the constant functions.
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The labelled case

The case of words with uniform frequencies

In the case of words ω with uniform frequencies, we can identify

the Benjamini-Schramm limit using the measure µ on Xω. We

start with the aperiodic case.

Theorem 2

If ω is a low-complexity aperiodic word with uniform frequencies,

then the labelled Rauzy graphs
⇀
Rn(Xω) converge to µ—viewing µ

as a distribution on A-configurations of the (bi-infinite) line graph

in
⇀
G•.
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The labelled case

Proof sketch:

1© If ω is aperiodic, then following the proof of Theorem 1 we get

that for any fixed φ > 0 and size k , for sufficiently large n, a

random neighbourhood of diameter k in
⇀
Rn(Xω) resembles a line

with probability at least 1− φ.

2© By the definition of uniform frequencies, for any u and error

ε > 0, for sufficiently large diameter k, the frequency of u in

ωiωi+1 . . . ωi+k is within ε of the true frequency of u, µ(u).

Combining 1© and 2©, we can get that at least a 1− φ proportion

of random k-diameter neighbourhoods are lines, and the frequency

of u within these lines can be made within ε of µ(u). So the

frequency of u in a large Rauzy graph can be bound between

(1− φ)(1− ε)µ(u) and (1 + ε)µ(u).
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The labelled case

The finite case

In the case of periodic or eventually periodic ω (which

automatically have uniform frequencies), we can also identify the

Benjamini-Schramm subsequential limits, however the limit only

exists in the periodic (= minimal) case; in the eventually periodic

case, there are p subsequential limits where Skω is periodic with

period p.
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The labelled case

This happens because the labels on the “handle” (pictured below)

cycle with n in
⇀
Rn(Xω), but all the graphs are rigid.

cca

ccc bca abc

cab

a

b ca©

b©
ccab

ccca bcab abca

cabc

b

c ab©

c©

ω = ccc(abc)∞

In the periodic case, the (unlabelled) graphs only have one

symmetry class, so this doesn’t occur, and all Rauzy graphs (for

n > p) are isomorphic. In this case, the measure is just determined

by the chosen (from {1, . . . , p}) vertex.
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The labelled case

Remark

All of the results of the earlier theorems also apply to bi-infinite

words ω ∈ AZ. The proofs are unaffected—one simply has to

appropriately modify a few definitions.
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The non-uniquely-ergodic case



The non-uniquely-ergodic case

The general situation is a mess.

By Theorem 1 for unlabelled Rauzy graphs, we know that any

subsequential Benajmini-Schramm limit of
(⇀
Rn(Xω)

)
n

is

supported on what is basically a set of A-configurations of the

bi-infinite line graph. The difference is that now, the space of

S-invariant measures on Xω is not a singleton, {µ}, but some sort

of (Choquet) simplex M(Xω,S).

[FM10] is a good reference for this theory for low-complexity words.
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The non-uniquely-ergodic case

A recent result of Cyr and Kra showed that low-complexity shifts

have finitely many ergodic measures [CK19], generalizing older

results of Boshernitzan which apply only to minimal shifts [Bos85].

Since we then know that E(Xω, S) ⊂M(Xω,S), the set of ergodic

measures, is finite, we can show that (Prop 6.4.2)

E(Xω) =
⋃

Y⊂Xω ,
Y minimal

E(Y , S)

But when there are two minimal subsystems, the behaviour can be

complicated.
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The non-uniquely-ergodic case

Example without a limit

Take t = 01101001 . . . to be the Thue-Morse word. Where

σ : {0, 1}∗ is the substitution map

σ :

{
0 7→ 01

1 7→ 10

we have that t = limn σ
n(0). Now, define

ω = t× (ab)∞
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The non-uniquely-ergodic case

Example without a limit (cont.)

With ω = t× (ab)∞ defined this way, the Rauzy graphs have the

following structure

⇀
Rn(Xt)︸ ︷︷ ︸

3n≤size≤ 10
3
n

tn−2 . . . 110a tn−3 . . . 10ab . . . 10aba . . . 0abab . . .

⇀
Rn(X(ab)∞)︸ ︷︷ ︸

size = 2

size = n − 1, labels from {a, b}

With
∣∣∣⇀Rn(Xt)

∣∣∣ n−1 oscillating between 3 and 10
3 , attaining both

values as limit points.
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The non-uniquely-ergodic case

Example without a limit (cont.)

One gets that, because the size of
⇀
Rn(Xt) oscillates in this way,

the Benjamini-Schramm limit oscillates along with it. Where µ is

the (unique) ergodic measure on Xt, and ν the uniform measure on

X(ab)∞ , the Benjamini-Schramm limit attains

3µ+ ν

4
and

10/3µ+ ν

13/3

as subsequential limits.

And in fact, all possible subsequential limits are a convex

combination of these two measures.
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The non-uniquely-ergodic case

Arrow reversal

Now, consider the related word, ω′ = (ab)∞ × t. Then the Rauzy

graphs look like

⇀
Rn(X(ab)∞)︸ ︷︷ ︸

size = 2

abab . . . 0 aba . . . 01 . . . ab01 . . . tn−3 a011 . . . tn−2

⇀
Rn(Xt)︸ ︷︷ ︸

3n≤size≤ 10
3
n

size = n − 1, labels from {0, 1}

Here, by contrast, {a, b} only appear on two edges. The

Benjamini-Schramm limit actually gives µ, the ergodic measure on

(Xt,S)!
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The non-uniquely-ergodic case

Conclusion

While in the non-uniquely-ergodic case the Benjamini-Schramm

limit set can be viewed as a subset of M(Xω,S), the limit set itself

does not necessarily contain any ergodic measures (though it can),

and it may or may not be a singleton (so the limit may or may not

exist).

Future work

The unsatisfying loose end of this is the case of the minimal

non-uniquely ergodic case. The constructions provided used

non-minimality in order to use growth of distinct sub-Rauzy graphs

to compute subsequential limits. For minimal words, where we

cannot do this, it is less obvious (to me, at least) what can happen!
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